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AFIT/L ,,'EE/82-1

Abstract

This dissertation presents the theoretical development

and numerical implementation of a minimum cross-entropy tar-

get detection algorithm. The procedure is based on the so-

lution of a nonlinear constrained cross-entropy minimization

problem and requires information in the form of raw image

moments. The detection rule involves both preprocessing and

real-time computations. The preprocessing requires the se-

,4 lection of a set of target templates and the solution of the

constrained cross-entropy minimization problem for the se-

lected target templates. The real-time processing requires

the computation of image moments and a set of dot product

operations.

An orthonormal set of "information functions" is devel-

oped and numerical methods of converting raw image moments

into the expected values of the information functions are

given. Numerical techniques for image moment computation

4and a solution scheme for the nonlinear set of constraints

are developed and implemented. -TeI theoretical development

of the detection algorithm is given tarting from a set of

consistency axioms. The expected periormance is analyzed

and factors determining performance pre 1ie-e4-i The procedure

is applied to a test set of 100 images and the detection al-

gorithm error probability is projected and related to the

salient performance determining factors.
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INFORMATION THEORETIC DETECTION OF OBJECTS

EMBEDDED IN CLUTTERED AERIAL SCENES

Chapter I. Introduction

The general problem considered in this dissertation is

that of characterizing and evaluating the information present

in the image plane of an optical system. The specific prob-

lem of interest is the detection of complex man-made objects

in aerial scenes that contain confusing background informa-

tion or optical clutter. A general overview of this target

detection in clutter problem can be found in Gagnon's disser-

tation (Gagno., 1975) while Harley et al (Harley, 1977) pro-

vide an overview of typical system parameters encountered in

practice.

The image plane which is the source of information for

this detection problem is usually a photograph which can be

taken from any airborne vehicle. The source of information

or aerial photographs are classified as either vertical or

oblique aerial photographs depending on the angle of inclina-

tion of the optical axis of the lens. Vertical photographs

are those taken with the optical axis of the lens pointing

vertically downward at the time of exposure. Oblique photo-

graphs are those taken with the optical axis intentionally

deviated from the vertical. Oblique photographs are further

classified as low and high oblique based on the magnitude of

1
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the a.,le of deviation. A low oblique has a relatively

small or low angle of deviation from vertical and does not

include the apparent horizor or the visible junction of

earth and sky as seen from the camera station. A high o-

blique has a relatively large or high angle of deviation

from the vertical and includes the apparent horizon (Whitmore,

1966: 1). This dissertation will only characterize vertical

photographs taken from a known altitude, however, the methods

used in this work should also characterize at least low o-

blique photographs.

Figure 1.1 shows some of the geometry involved in gener-
J \

ating a vertical aerial photograph. Each camera exposure pro-

duces a frame of information that is shown as a series of

large non-overlapping squares in the figure for simplicity.
2 tThe frames are also shown partitioned into K "information

cells" that form the basic decision elements for the detec-

tion algorithm. The objects to be located belong to one of

a set of known classes and all elements in a given class are

essentially identical. The class of objects of current in-

terest is called the target and a target can appear at any

location and orientation within a frame.

With this problem formulation the only information avail-

4 able for target detection is the image plane irradiance dis-

tribution function I(x,y) that is the image of the clut-

tered ground scene. Formation of this image I(x,y) from

an object scene F(f,J) actually represents a flow of in-

2
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format'on from the object plane to the image plane. The

carriers of information are the photons. In traveling from

the object plane to the imaE- plane, a photon encounters

intervening physical processes such as lenses and the atmos-

phere. The sum of these processes forms an information chan-

nel. In its most basic sense, the irradiance distribution

function is no more than a superposition of photon events.

These events are photon arrivals (units of irradiance) for

the image or photon departures (units of radiance) from the

object. The sum or density of the photon events as a func-

I! tion of position in the image plane defines the irradiance

distribution function (Frieden, 1979). It is this irradiance

distribution function I(x,y) or photon density that repre-

sents the information channel output and that must be char-

acterized and used in the detection algorithm.

Looking at the image more mathematically, let C(x,y,t,A)

represent the spatial energy distribution of an image source

of radiant energy at spatial coordinates (x,y) at time t

and a wavelength X • Because light intensity is a real

positive quantity, that is because intensity is proportional

to the modulus squared of the electric field, the image light

function is real and non-negative. Furthermore, in all prac-

tical imaging systems there is always a small amount of back-

ground light present. Because of this background light and

the physical restrictions imposed by the imaging system, it

is assumed that

,4.



0 < C(x,y,t,A) 'A

where A is the maximum brightness. An image is also nec-

essarily limited in extent by the imaging system and the re-

cording media. For mathematical simplicity all images in

this dissertation are assumed to be nonzero only over a

square region for which

-L 'x,y i L

Since the image is also observable only for a finite time,

(-Tit'T) the image light function C(x,y,t,X) is a bounded

four-dimensional function with bounded independent variables.

As a final restriction, it is assumed that the image light

function is continuous over its domain of definition (Pratt,

- *1978t 4). The image light function C(x,y,t,A) is actually

at worst piece-wise continuous and is well approximated by

a continuous function.

The brightness response to the image light function

C(x,y,tX) can now be defined for both men and machines.

In men the brightness response of a standard human observer

is commonly used to define the instantaneous luminance of the

light field as shown by

* Y(x,y,t) = (xy,t, X)V (k)dX

5



where S (A) represents the relative luminous efficiency

function or the spectral response of human vision. Similarly,

.i the color response of a standard human observer is measured

and used in terms of some set of tristimulus values that are

linearly proportional to the amounts of red, green, and blue

light needed to "match" a colored light. In a machine with

a multispectral imaging system the observed image field is

modeled as a spectrally weighted integral of the image light

function. The ith spectral image field is then given by

F, (X,ytt) - XYtxs (A)dX

where S, (A) is the spectral response of the ith sensor (Hall,

C., 1978: 17). For a monochrome imaging system, as will be

used in this dissertation, the image function F(x,y,t) nom-

*. inally denotes the image luminance or some converted or cor-

rupted physical representation of luminance.

The image function F(x,y,t) is propagated through the

information channel or transformed from the object scene

plane to the image plane of the aircraft to form the instan-

taneous irradiance distribution. The channel transformation

can be viewed as a one-to-one mapping and is defined by

I(x,y,t) = T{F(x $Y t)}

When the transformation is also assumed to be an additive

6



linear operator the standard superposition integral descrip-

tion of the channel output is obtained. Using the sifting

property of delta functions the mapping is first rewritten as

I(x,y,t) = TfJ/F(,,1,t) (x-4,y- )d~d}

Now changing the order of the general linear operator T

and the integral operator results in the expression

I(x,y,t) = ( ,,1t) T (x-4,y-) d}d

Then defining the channel point spread function as H(x,y;4,I)

= T {(x-4,Y-1)} gives the desired integral expression for

the channel output I(xyt). The superposition integral

description of the channel output or irradiance distribution

is given by

I(x'y't) = ffF(.,.7t) H(xy.4,7)d~d1

In the object detection problem of interest in this work, the

image does not change with time and the time variable can be

dropped from the instantaneous irradiance distribution to

4| let I(x,y) represent the spatial distribution of light in

the image plane or the light density function.

Now the normalized irradiance distribution can be defined

* by[i 7



L L

i(x,y) = I(xy)/f I(xy)dxdy

7 The normalized distribution function has all the properties

of a bivariate probability density function since

ffi(xy)dxdy = 1
-L -L

and the probability of a photon arriving in any region R of

the image is given by the expression

IP(R) = J/i(x,y)dxdy

Several other authors have used this probability density view-

point in their work in image processing. Among these are

Frieden, working with image restoration techniques (Frieden,

1972) and Minerbo, in reconstructing a source from a discrete

set of projection data (Minerbo, 1979). Using this viewpoint

it is this bivariate probability density function that must

be characterized and used in the detection algorithm.

4
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Chapter II. Maximum Entropy and

Minimum Cross-Entropy

The principles of maximum entropy and minimum cross-

entropy provide a means of approximating the normalized irra-

diance distribution i(x,y) and detecting targets of inter-

est in a cluttered aerial scene. The approach taken in devel-

oping a detection rule for the cluttered scene problem of

this dissertation is based on entropy and cross-entropy hav-

ing unique properties as information measures (Johnson, 1979)

and on cross-entropy minimization having unique properties

as an inference procedure (Shore, 1980). The work is an

extension of Miller's work (Miller, 1980) in approximating

one-dimensional probability density functions using a maximum

entropy criterion and much of the background material is re-

viewed in his dissertation.

Background

The principles of entropy maximization and cross-entropy

minimization both have their roots in Shannon's work in com-

munication theory. For discrete, noiseless systems, maximiz-

ing the source entropy results in the best source encoding

in the sense of enabling the highest information rate over a

fixed capacity channel (Shannon, 1948a). For continuous sys-

tems, Shannon's definition of source rate for a fixed fidel-

ity criterion or rate-distortion function involved the mini-

I' j



mizatin of a functional (mutual information) like cross-

entropy (Shannon, 1948b). However, it was Edwin Jaynes who

first proposed the principle of maximum entropy as a means

of approximating an unknown probability density function more

than twenty-five years ago (Jaynes, 1957). While the name

cross-entropy is due to Good (Good, 1963), the principle of

minimum cross-entropy is a generalization of the maximum en-

tropy principle that was first proposed by Kullback, who

called it a principle of minimum directed divergence or min-

imum discrimination information (Kullback, 195937). Jaynes'

work has been applied in a number of areas, but within the

engineering community the most widely known application is

Burg's Maximum Entropy Spectral Analysis (MESA) technique

(Burg, 1967). However, the maximum entropy principle is ap-

plied indirectly in terms of filtering, rather than directly

* in terms of approximating the underlying probability densities

and it is not widely understood that MESA is identical to

Jaynes' principle (Shore, 1981). Despite their many proven

applications, Jaynes' principle of maximum entropy and Kull-

back's principle of minimum cross-entropy have had a contro-

versial history due to their rather intuitive justification

based on entropy's properties as an information measure.

4 Recently, however, Shore and Johnson have demonstrated (Shore,

IF 1980) that these principles are correct general methods of

inference when given information in terms of expected values.

K Their results rest on four consistency axioms which are used

10 10



to de-nnstrate maximizing any other function, but entropy

will lead to logical inconsistencies unless that function and

.entropy have identical maxima.

Definitions and General Problem Statement

Given the historical outline, this section will describe

the general setting where the maximum entropy and minimum

cross-entropy principles can be applied and define the nota-

tion that will be used throughout the dissertation. The main

interest in this work is approximating continuous bivarate

density functions and making logical inferences based on this

approximation. Because the cluttered aerial scene problem

is driving this review, all n-dimensional results will only

be presented for bivariate density functions.

The theory for approximating discrete probability den-

sity functions using the principle of maximum entropy is well-

known and has found a great many applications. In this prob-

lem formulation, the underlying system has n possible

states x, and they occur with unknown probabilities q(x).

The system is observed with the observations taking the form

q(xI )fk(x) = Mk or as the expected value of a set of

"information functions" {Q}. The problem then is to choose

a distribution e(x1 ) that is in some sense the best esti-
i

mate of q(x1 ) given the expected vale measurements. In

general, there remains an infinite set of distributions that

are not ruled out by the expected value measurements that

now serve as constraints on any approximating distribution.

1.1



The ma"imum entropy principle, however, provides a unique

approximation density e(x1 ) by selecting from the infinite

set of densities that satisfy the constraints the one density

with the largest entropy defined as - e(x )log e(x

The principle of minimum cross-entropy is a generaliza-

tion of the maximum entropy principle that applies in cases

when a prior distribution p(x1 ) that estimates q(x1 ) is

known in addition to the measurement constraints. The prin-

ciple states that: of the infinite set of distributions

e(x,) that satisfy the constraints, choose the one with the

least cross-entropy Ee(x)log [e(x 1 )/p(x)] . The connection

between the two principles occurs when the prior is a uniform

density and in this case minimizing cross-entropy is equiva-

lent to maximizing entropy. The concept of cross-entropy

also generalizes correctly for continuous probability densi-

ties unlike the concept of maximum entropy, where only a

* differential entropy is defined in the continuous case arnd

that is not even invariant under coordinate transformations

(McEliece, 1977:38).

In the case of continuous bivariate probability densities

the principle of minimum cross-entropy provides a general

method of inference about an unknown density q(x,y) when

4there exists a prior estimate of q(x,y) and new information

about the unknown density in the form of expected values of

the information functions. The principle states that: of all

the densities that satisfy the expected value constraints,

12



choose as the approximating density the posterior e(x,y)

with the least cross-entropy

H(e,p) =fe(x,y)log Ee(xoy)1 dxdy

where p(x,y) is a prior estimate of q(x,y). Jaynes has

also shown (Jaynes, 1968) that generalizing entropy maximiza-

tion to continuous densities leads to the above cross-entropy

functional with p(x,y) being called an "invariant measure"

instead of a prior density. When using the entropy maximiza-

tion principle, there is an implicit assumption of uniform

priors when viewed from the broader cross-entropy perspective.

The failure of maximum entropy to generalize as might be ex-

pected is also explained by this viewpoint since a uniform

prior in one coordinate system may not be uniform in another

coordinate system (Shore, 1980).

The Consistency Axioms

Shore and Johnson (Shore, 1980) have proven that given

a prior density and new information in the form of constraints

on expected values, there is only one posterior density satis-

fying these constraints that can also be chosen in a manner

that satisfies a set of logical consistency axioms. In addi-

tion, this unique posterior density can be obtained by mini-

mizing the cross-entropy functional. The four consistency

axioms are informally defined as follows:

13



1. Uniqueness: The result should be unique.

2. Invariance: New information can be accounted for

in any coordinate system.

3. System Independence: Independent information about

independent systems can be accounted for separately

in terms of different densities or together in terms

of a joint density.

4. Subset Independence: Information about an independ-

ent subset of system states can be accounted for in

terms of a separate conditional density or it terms

of the full system density.

All four of these axioms are based on a single fundamen-

tal principle: If a problem can be solved in more than one

way, the results should be consistent (Shore, 1980). The

axioms are the desired properties of an inference procedure

rather than the desired properties of an information measure.

Using only a general functional J(e,p) to select the poste-

rior density e(x,y) in the inference procedure and starting

with the axioms of subset independence and invariance, Shore

and Johnson were able to show that the first consequence of

their axioms was to restrict J(e,p) to functionals that are

equivalent to the form

J(e,p) = fff[e(x,y),p(x,y)]dxdy

14



for sc .e function f of two variables. This functional form

is called the "sum form" and in work previous to Shore and

Johnson's development, the sum form was assumed rather than

derived (Johnson, 1979). Then having established this func-

tional form and using the general axiom of invariance, they

show that J is further restricted to functionals that are

equivalent to the form

J(e,p) ff.fe(x.,y) h[f ex )] dxdy

where h is some function of a single variable. Using all

four axions, Shore and Johnson are finally able to show that

J must be equivalent to the functional

J(e,p) = ffe(xy)log[e(xY)]dxdy

fD LPTI

or J(e,p) must be equivalent to cross-entropy. Since it

is possible that no functional satisfies the consistency

axioms, their final step is to show that the cross-entropy

functional H(e,p) satisfies all four axioms. The Shore

and Johnson result has immediate application to approximating

* the normalized irradiance distribution i(x,y) since it pro-

vides a logically consistent method of approximating the

light density based on measurements in the form of expected

* values. The procedure to follow then requires a prior esti-

mate of the light density, expected value information about

15



the tr-e density i(x,y) and the functional H(e,p) to

measure how much the prior density differs from the posterior

density. The principle of minimum cross-entropy is then the

correct method of incorporating all the given information

and producing a logically consistent posterior density e(x,y)

that approximates the unknown true light density i(xy).

Properties of Cross-Entropy Minimization

The basic properties of cross-entropy minimization are

fundamental to the problem of detecting objects in a cluttered

aerial scene using the posterior density e(x,y) as an opti-

mum light density approximation. Because of their importance

in developing a target detection algorithm and for complete-

ness, I will outline the well-known properties of cross-

entropy minimization and the notational system developed by

Johnson and Shore (Johnson, 1980). Many results dealing with

cross-entropy minimization can be efficiently stated in terms

of an abstract information operator * which takes the two

known arguments of a prior density and new expected value

information to yield a posterior density. Using this opera-

tor notation, the posterior e is given by e = p*I where

I stands for the known constraints on the expected values.

The problem will be stated more formally in this section

to allow concise definitions of minimum cross-entropy proper-

ties. Again in this outline, because of the thrust in this

dissertation of approximating a bivariate density function,

all results will be presented only for the two-dimensional

16
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case. The formal problem statement defines a point (x,y)

in the x-y plane as a system state with D the region in the

plane where all states are defined. Then S is the set of

all probability densities S(x,y) on D such that

S(x,y) 2 0 for (x,y) C D and

f S(x,y)dxdy = 1
D

New information takes the form of linear equality constraints

or

fq(x,y)fk (x,y)dxdy =

where q(x,y) is the unknown true system density with

q(xy) e S and f (x,y) are known information functions

with known expected values. The probability densities that

satisfy these constraints always comprise a convex subset

Z of S (Johnson, 1979). The set Z is then termed a

constraint set and in general, a given convex region Z of

S may be defined by more than one set of information func-

tions. The fact that the constraints form a convex subset

of S insures the convergence of computational methods at-

4 tempting to find the minimum cross-entropy posterior density.

The expected value constraints and the resulting convex set

Z form the term I used in the abstract operator notation.

The second argument for the information operator * is

17
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a prio - density p(x,y). The density p(x,y) contained in

S is used to define an estimate of q(x,y) which can be

obtained by any means prior to learning the average value

information I. The prior density is required to be strictly

positive over D:

p[Xy) E D >0

In making this restriction, it is assumed that D is the set

of states that is possible according to the prior informa-

tion. The restriction does not significantly restrict results,

but does avoid the technical problems that would result from

division by p(x,y) equal to zero. In a more general setting,

D would be a measurable space and p and e would be re-

placed by prior and posterior probability measures. By defin-

ing probability densities, it is implicitly assumed there is

some underlying measure with respect to which the other meas-

ures are absolutely continuous (Kullback, 1959:4). Such a

measure will exist when no event with zero prior probability

4 can have a positive posterior probability and which is demand-

ed by the strictly positive assumption for p(x,y) (Guiasu,

1977).

Given the two arguments for the information operator *

(the prior p(x,y) and new information I), the posterior

density e(xy) e Z that results from taking I into account

is selected by minimizing the cross-entropy H(s,p) in the

18
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constr-int set Z:

H(e,p) minH(s,P). ' ''"seZ "

Using this problem statement and the cross-entropy minimiza-

tion procedure, the following properties apply to cross-

entropy minimization:

Property 1: (Uniqueness) The posterior e = p*I is

unique.

" The uniqueness property insures that the solution of a

given cross-entropy minimization problem for the posterior

density e(x,y) is unique. The minimization of the func-

tional H(e,p) allows this unique density to be identified.

Property 2: (Prior Omnipotence) The posterior satisfies

e = p*I = p if and only if the prior satisfies p e Z.

The prior omnipotence property shows that when the new

information I agrees with the assumed prior density the

4 prior and posterior are equal. When cross-entropy minimiza-

tion is viewed as an inference procedure, it makes sense that

the posterior density e(x,y) should be unchanged from the

* prior, if the new information does not contradict the prior

density p(x,y) in any way.

Property 3: (Idempotence) (p*I)*I = p*I

19



icempotence insures that taking the same information

into account twice has the same effect as taking it into ac-

count once.

Property 4: (Information Intersection) Let I be the

information I= (qe Z1 ) where this notation denotes that

q is a member of the constraint set ZI & S created by the

constraints I and 12 the information 12 = (q e Z ), for

overlapping constraint sets Z I, Z2  S. If (p*I1 ) C Z2

holds, then

p*l = (p*I =)*(l nl 2 )  (p*I )*1 = p*(Inl)

holds.

The information intersection property is similar to the

prior omnipotence property. The result shows that when I,

is taken into account, if the resulting posterior density

p*I already satisfies the constraints imposed by the addi-

tional information 12, then taking 12 into account in

various ways has no effect on the posterior density.

Property 5: (Invariance) Let T be a coordinate trans-

K formation from (x,y) E D to (u,v)4E R with (Te)(u,v) =

.1
J e(xy), where J is the Jacobian J = 3(u,v)/6(x,y).

Let TS be the set of densities Te corresponding to densi-

ties e E S. Let (TZ) (TS) correspond to Z 9 S. Then

20



Fi (Tp)*(TI) = T(p*I)

and

H[T(p*I),Tp H(p*I,p)

hold, where

TI [Tq) (TZ

or Tq is a member of the constraint set TZ TS created

by the constraints TI.

The invariance property states that the same answer is

obtained when an inference problem is solved in two different

coordinate systems, in that the posterior densities in the

two systems are related by the coordinate transformation.

Also, the cross-entropy between the posteriors and the priors

has the same value in both coordinate systems.

4 Property 6s (System Independence) Let there be two

systems, with sets D, and D2  of states and probability

densities of states el E S, and e2 E S . Let p, e S1

and P2 f S2  be prior densities. With I = (q, e Z1 ) and

12 = (q2 f Z2) new information about the two systems, where

Z, S, and Z. 9 S2  Then

(pp2)*(Il n I2) = (pI *I)(p2*,)
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and

H(e, e2 pp 2 ) = H(e,,pl) + H(e 2 ,p 2 )

hold where e, = p**I, and e2 = p2"I2.

The system independence property shows that it does not

matter whether independent information about two systems is

accounted for separately or together in terms of a joint

density. Whether or not the two systems are in fact independ-

ent is irrelevant since the property applies as long as there

are independent priors and independent new information.

Property 7l (Triangle Relations) For any r(x,y) e Z

H(r,p) ' H(r,e) + H(e,p)

where e = p*I. When I is determined by a finite set of

equality constraints only, equality holds.

The triangle equality is important for all applications

4 in which cross-entropy minimization is used for purposes of

classification on pattern recognition.

* Property 81 (Posterior Convergence) The relationship

H(q,p*I) i H(q,p)

holds with equality, if and only if p*I = p.
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T'-e posterior convergence property states that the pos-

terior density e(x,y) is always closer to the scene density

q(x,y) in the cross-entropy sense than is the prior density

p(xy).

Property 9: (Piecemeal Information) Let the system

have a probability density q f S, and let there be informa-

tion I, = (q e Zj) and I. = (q f Z2 ), where Z , Z2 % S

are constraint sets with non-empty intersection. Given that

Z is determined by a set of equality constraints only, then

(p*lI ) (li n 12) = p*(lI n 12)

and

H(e,p) = H(ee l ) + H(ejp)

hold where e = p*(Ii n 12) and el = p*I,.

The piecemeal information property is also important

*. because of its application in classification and pattern re-

cognition. In general, this result is important in any ap-

plication where the constraint information arrives piecemeal

*I and states that intermediate posterior densities can be used

as priors in computing final posterior densities without af-

fecting the results.

* There are additional cross-entropy minimization proper-

23
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ties o' general interest not covered in this listing. The

additional properties will be developed and discussed in the

*next chapter. Chapter III will develop a minimum cross-

entropy posterior density approximation and a target detec-

tion algorithm based on the approximation and properties of

minimum cross-entropy densities.

.4
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Chapter III. Detection Algorithm Development

Introduction

The theoretical development of an algorithm for detect-

ing complex man-made objects in cluttered aerial scenes will

be presented in this chapter. The introduction to this dis-

sertation outlined the general framework for the object de-

tection problem and showed how scene frames are partitioned

in K2 information cells. The detection algorithm developed

in this chapter is then sequentially applied to each informa-

tion cell in a frame resulting in all cells being classified

as containing targets or only clutter. To develop the de-

tection algorithm, the irradiance distribution function for

the ith cell, in the jth frame will be denoted Qii (xy).

The normalized irradiance distribution function is denoted

qjj (x,y) and has all the properties of a bivariate probabil-

ity density function. Following the notation of previous

chapters, e,, (x,y) is the minimum cross-entropy approxima-

tion to the ith cell and jth frame normalized irradiance

distribution function q,, (x,y). The computation of the

approximation e,, (x,y) requires a prior ith cell and jth

4 frame density p11 (x,y) and new expected value information

II •Throughout the remaining sections of this dissertation

it is assumed we are working with the ith information cell,

4 in the jth frame of an aerial scene and the explicit reference
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to the cell and frame number will be dropped unless it is

require~d for clarity.

Solution of the Constraint Equations

To classify cell density functions qi, (x,y) as contain-

ing targets or only clutter will require an explicit proce-

dure for obtaining the minimum cross-entropy density e1 ,(x,y)

based on a set of information function expected value rela-

tions. The information functions fk(x,y) used in the mini-

mum cross-entropy inference procedure are critical components

of the detection algorithm and will be explored fully in the

next chapter. The expression for the minimum cross-entropy

posterior density can be found given that the number and

forms of the information functions are specified and their

expected values have been computed over the information cell

or symbolically,given fk(xy) and mk; k = 0,1,2...t are

known. The minimum cross-entropy posterior approximation of

q(xy) will then be the continuous density e(x,y) defined

on the region -C ! x,y I C that has a prior representation

p(x,y) and will satisfy the new expected value information

I. The mathematical statement of the problem is to find

e(xy) subject to the constraints:

minH(ep = max (x,y)lnFe(x, Y)1 dxdy

subject to
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ffe(xy)dxdy = 1

-C -C

and

ffk (xIy) e(x,y)dxdy m mk
-C-C k 1,2...t

The information functions fk(x,y), k = 1,2...t are contin-

uous and bounded on the region -C ! x,y : C. The problem

stated above is a constrained minimum problem and can be

* solved using the Lagrange method of undetermined coeffieients.

The Lagrangian, L [e(xy),A] is then formed as follows

(Luenberger, 1969:213):

L[e(x,y),A] - -H(e,p) -XO f(xy)dxdy 1

-Fi f f!(xy)e(x,y)dxdy - m

Using the expression for cross-entropy, the Lagrangian can

be expressed as:

C C t
L[e(xy),A] =ff(x,y)in { (x, -x 0- Exifi(x'Y}dxd y

t
+ XO  + ---'-X 'm I

i-1

The Lagrangian can also be written in the form:

27
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L{o~x,,. .' Fpx,y) exp[X. - EXifi. (X. Y).dxdy

t
+ Ximi

i-I

Now using the fact that for Z : 0 the natural logarithm is

bounded by

ln(Z) < Z - 1 if Z / 1

and

ln(Z) = Z - 1 if Z = 1

provides a method of bound-ng the Lagrangian. Using this

property of natural logarithms provides the relationship:

L [e(x,y) , ,] <c ffF(x,y) P y)" exp -X0- Exif ( x ' y )  1 dxdy

t

A + E XImI
Jul

The goal of this procedure is to maximize the Lagrangian

L[e(x,y),AJ and therefore e(x,y) must be selected to pro-

vide equality in the last expression. Again, using the pro-

perty of natural logarithms equality occurs, if and only if

e(x,y) = p(x,y)exp I@- (x,y)]
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the point where Z = 1. The preceding result is well-known

(Johnson, 1980:27), however, the derivation given here is

unique to this dissertation. The derivation of the minimum

cross-entropy density seen here is an extension of Miller's

work in maximum entropy and univariate densities (Miller,

1980:29).

The expression above for e(x,y) provides the required

form of the minimum cross-entropy density that approximates

the unknown true density q(x,y). Given a specific set of

expected values (m |k = 0,1...t), we solve the t + 1 con-

T
straint equations for A = (X0,X1 ... X, to then completely

determine e(x,y). The method of solving the given set of

nonlinear constraint equations for the lambda vector will be

presented in Chapter V.

From property one of Chapter II, we know the minimum

cross-entropy posterior density e(x,y) is unique. In terms

of the abstract information operator * a solution to the

cross-entropy minimization problem, if one exists, is unique

provided only that H(e,p) is not identically infinite as

e(x,y) ranges over the constraint set Z. A condition that

guarantees the existence of a solution is that in addition to

containing a density e(x,y) with finite cross-entropy, the

constraint set Z is closed (Johnson, 1980:5). For Z to

be closed, it suffices in turn that the constraint functions

fk(x,y) are bounded. Conversely, given values of

A= (AoA 1 ,...At) such that all constraints are satisfied,

29
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then th-e solution exists and is given by the above minimum

cross-entropy expression for e(x,y). Conditions for the

general existence of solutions to the constrained minimiza-

tion problem are also discussed by Csiszar (Csiszar, 1975).

For this work with normalized irradiance distributions using

a finite set of bounded information functions fk (x,y) and

only equality constraints, the solution to the constrained

minimization problem will always exist and have the unique

form for e(x,y) derived in this section as the minimum

cross-entropy density.

0> Solution Characteristics

In general cross-entropy H(e,p) measures how much

e(x,y) differs from the prior p(x,y). The cross-entropy

at the minimum can be expressed in terms of the Lagrange

multipliers and the expected values of the information func-

tions. Starting with the expression for the minimum cross

entropy density or

t

e(xy) = p(xty)exp[-A- iofn XY)]

and rearranging gives the expression

plnre(xy) = [xe- EA I (x)L Jxiy

Now multiplying by e(x,y) and integrating over the informa-

tion cell gives the expression
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fJe(x,y)1n[ e ( x y ) dxdy = - Aoffe(x,y)dxdy

- AjJ-fA ix,y)e(x,y)dxdy
i-I

Therefore, the cross-entropy H(e,p) at the minimum point

is given by

t

H(e,p) = -m - jmj

Kullback has also shown that cross-entropy in general

satisfies the relationship

H(ep) a 0

and with equality only if p(x,y) = e(x,y) almost everywhere

(Kullback, 1959). Informally, H(e,p) is a measure of the

information divergence between the density function e(x,y)

and a prior density function p(x,y). Then using H(e,p)

as an information divergence measure and since e = p*I mini-

mizes H(e,p), the posterior approximation for q(xy) is as

close as possible in an information-measure sense to the

prior density while at the same time satisfying the new in-

formation constraints I taken from the unknown cell density

q(x,y).

Further Minimum Cross-Entropy Properties

The properties presented in this section highlight
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cross-_ntropy's ability to measure how much a posterior den-

sity differs from the assumed prior density. Even though

cross-entropy does not have all the properties of a metric,

H(ep) does have other properties that make it ideal for

use in a target detection algorithm. These properties are

presented in this section and then used in the next section

to develop the minimum cross-entropy detection rule.

Triangle Equality: Let I be the constraints given by

ffk (xy)q(xy)dxdy = mk
coll

k 1,2...t

and let p(x,y) be any prior probability density. Then

H(qp) = (qp*I) + H(p*Ip)

The minimum cross-entropy posterior estimate of q(x,y)

is both logically consistent (four consistency axioms) and

closer to q(x,y) as measured by cross-entropy than the

prior density p(x,y). Also, the difference H(q,p) - H(q,e)

is exactly the cross-entropy H(e,p) between the posterior

and the prior. Therefore, H(e,p) can be interpreted as the

amount of information provided by the constraints I that is

not inherent in p(x,y). The posterior accessibility proper-

ty also shows that the difference H(qp) - H(q,e) will

32
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equal -.ero when the correct expected value constraints are

provided.

Posterior Accessibility: For any density d(x,y) there

exists constraints Id  such that d = p*Id for any prior

density p(x,y).

This property due to Csiszar (Csiszar, 1975) shows that

H(d,p) is in general the amount of information needed to

determine d(x,y) when given the prior p(x,y). The result

also shows that the cross-entropy H(d,p) measures the error

introduced by using p(x,y) instead of the true density

d(x,y). Used as an error measure, the posterior accessibility

property will allow the template to scene cross-entropy

H(q,t) to provide a "metric" for measuring the detection

rule's sensitivity to variations in the performance determin-

ing parameters presented in Chapter V. The next property

also shows that the minimum cross-entropy template provides

the minimum error possible when the template is restricted

to an exponential form.

Expected Value Matching: Let I be the constraints

ff fk (xy)q(xy)dxdy = k
cell

k= 1,2...t

for a fixed set of information functions fk(x,y) and let
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e = p*i be the result of taking this information I into

account. Then for an arbitrary fixed density d(x,y) the

cross-entropy H(d,e) = H(d,p*I) has its minimum value when

the constraints satisfy

mk m = ffd(xy)fk(xy)dxdy
k k

Coll

k= 1,2...t

This result is due to Johnson and Shore (Johnson, 1980)

and is a generalization of a property of orthogonal poly-

nomials that in the case of speech analysis is called the

"correlation matching property" (Markel, 1976). Using this

result insures that when a minimum cross-entropy density

e(x,y) of the general form

e(x,y) = p(xy)exp [4 0 - 1 f (xy

then H(d,e) is smallest when the expectations of e(x,y)

match those of the arbitrary density d(x,y). Therefore, in

general it follows that e = p*I is not only the density that

minimizes the prior to posterior cross-entropy H(e,p), but

it is also the density of the general form shown above that

minimizes the posterior to scene cross-entropy H(q,e) since

d(x,y) was an arbitrary density (Shore, 1980). Hence,

e(x,y) is not only closer to q(x,y) than is p(x,y), but
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it is -he closest possible density of the exponential form

given above for e(x,y).

The final property of c-oss-entropy minimization re-

quired to develop a target in clutter detection algorithm is

the posterior adaptation property presented by Johnson and

Shore (Johnson, 1980).

Posterior Adaptation: Let Ii and 12 stand respectively

for the information constraints

If(xy)ql(xy)dxdy = m1

cell

and

[Fr (xy)q2 (xy)dxdy =m )

cell

which involve the same set of information functions f1 (x,y)

where j = 1,2...t. Then

(p*V)*12 p*12

and

H(e ,p) = H(eel) + H(e1,p) + -?
: i-I

hold where ei = p*i,, e2 = p*12  and are the Lagrange

multipliers associated with el = p*I1 .
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T'e application of this property views q1 (x,y) and

q2 (x,y) as the unknown system or scene probability densities

at two different points in time. Then q1 (x,y) is used as

a prior estimate or template for q2 (x,y). The posterior

adaptation property shows that when 12 is determined by

expectations of the same information functions that also

produced I,, the results of producing a posterior e1 (x,y)

using I are completely wiped out by subsequently producing

a posterior e2 (x,y) using 12. The posterior adaptation

property is shown graphically in Figure 3.1.

The Detection Algorithm

Using a constant set of information functions

lf(xy)lJ = 0,1,2...t] (see Chapter IV) and a uniform prior

density p(x,y), the posterior adaptation property serves as

a starting point for the detection algorithm. The information

1k) is obtained from a set of predefined template scenes

qk)(xy) where k = 1,2...2Q. These template scenes model

the target of interest and various possible clutter cmnfig-

urations to provide the detection rule with Q target versus

clutter alternatives. With this information 1 a set of

minimum cross-entropy (maximum entropy) template densities

t(k) (x,y) where k - 1,2...2Q can be defined as t k) = p. )

corresponding to the e1 (x,y) density in the posterior adap-

tation result.

In a more general setting, when there are N targets of4

interest the minimum cross-entropy template densities will

36
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Fig. 3.1. Posterior Adaptation

be denoted

t"4(x~y) where 1 0 ,1,2...

and k =1,2...Q

*Q This notation refers to the N targets of interest as dis-

cussed in Chapter I where zero is reserved for the "only

clutter" template and there are Q possible clutter back-

grounds for each of the total N + 1 target classes. The

resulting (N + 1)Q template densities are obtained from a

minimum cross-entropy procedure as

6
t~ k)  = p.I (1k

)
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(1k)
where p(x,y) is the uniform prior density and I is the

expected value information obtained from the template scenes

as

Jf, (x,y)4 1 (x,y)dxdy M

Coll

where

j = 1,2...t

k = 1,2...Q

and

1 O,1...N

The production of the Q(N + 1) template scenes

41k)(x,y) is presented in Chapter VI, however, the basic prin-

ciple uses a master target template to represent each of the

N target classes. Each master target template is then super-

imposed on the Q different clutter backgrounds to offer

4Q target and clutter configurations to the detection algo-

rithm for each target class. Appendix A shows eighteen three-

dimensional template scenes used to test the detection rule,

nine of which represent a tank in clutter and nine of which

represent only clutter. This set of template scenes where

N equals 1 and Q equals 9 provided the expected value

information used to produce the template densities shown in
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Append>i B. in the general setting and using the resulting

template densities 'k) (x,y) every information cell analyzed

by the detection rule will be classified as only clutter or

as containing one of the N targets of interest. The clas-

sification is based on the ability of cross-entropy 
H(q,t (k)

to measure how much the cell density q(x,y) differs from

the template densities t(Ik)(x,y).

To develop the actual classification rule several other

minimum cross-entropy properties must also be used. Using

the same set of information functiins [f1 (xy)lj = 0,1,2...t]

used to construct the minimum cross-entropy template densities

t(Ik)(x,y), measurements of the information functions expected

values are taken from the scene density q1p (x,y) of the ith

cell and the pth frame of the aerial scene. These measure-

ments form a set of constraints I on the posterior density

and are obtained as

Ifff (xy)q(xy)dxdy = m1

Cell

4 where

j 1,2...t

to form a measurement vector M. Using this constraint infor-

mation coupled with the prior density p(x,y) will allow a

4 minimum cross-entropy posterior density to be produced as
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e = p*. Figare 3.2 shows all the densities used in this

development of the detection algorithm and how these densi-

ties evolve as new expected value information is used in the

minimum cross-entropy procedure.

The cell information I can also be applied to the

(N + 1)Q minimum cross-entropy template densities t(k)(x,y).

Abstractly, this procedure is forming a new set of (N + 1)Q

adapted template densities using the new expected value in-

formation I and the predefined template densities t(k)(x,y)

as priors. Using the operator notation adapted densities are

constructed as

d4= t .k) *I

where

1= 0,1,2...N

k = 1,2...Q

'q Figure 3.2 provides a complete summary of the detection

algorithm notation and minimum cross-entropy densities being

generated. The scene density q(x,y) represents a general

4 information cell that must be classified by the algorithm.

Now the triangle equality can be applied to show that

."4 q H(q,t k) ) = H(q, d(k) ) + H(d(1k) , (1k)

L

LJJ



Ito

10. 
@

a).

- V2

00

10 0

F-1-

0

Q))

4.1-

41



where I = O,1,2...N and k = 1,2...Q. Also the adaptet

template densities were obtained as

d0  = t (11 *I

or

d(k) = (p*l( )*l

Using the posterior adaptation property results in the expi--

sion

dOk) = p*I = e

where again 1 = 0,1,2...N and k = 1,2...Q. This result

shows that all (N + 1)Q adapted template densities shownr

Figure 3.2 are equal to the single posterior density e(x,-:.

Returning to triangle equality with this result gives

H(q,t (' k) = H(q,e) + H(e,t (Ik)

with 1 = 0,1,2...N and k = 1,2...Q.

The cross-entropy H(q,tO)) is the amount of informa-

tion needed to determine the true information cell densit-:

q(x,y) given the predefined template density t(I)(x,y) c-

it is a measure of how much q(x,y) differs from the temr
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densitY. The triangle equality given above shows that the

total "distance" between q(x,y) and the template density

tOk)(x,y) or H(q,t(Ik)) is the sum of two components The

expected value matching property has shown that the first

term H(q,e) already represents a minimum "distance" between

q(x,y) and the best posterior estimate of q(x,y) with the

required exponential form. The second variable term

H(e,t("k) is the "distance" from the template density

tok)(x,y) to the minimum cross-entropy posterior density

e(x,y).

The strategy for a detection algorithm is now to use the

expected value matching property of the minimum cross-entropy

procedure. Also, since H(q,e) has previously been shown to

have its minimum possible value, the detection rule must se-

lect the template density tw)(x,y) from the set of (N + 1)Q

total templates because it is the density that minimizes the

cross-entropy H(et('O). The triangle equality for cross-

entropy therefore results in a detection rule based on the

"distance" between minimum cross-entropy template densities

4 tOk(x,y) and the minimum cross-entropy scene density e(x,y).

The rule requires that we find aO such that

4 H(e,t (a) H(e,t(k))

as 1 varies from 0 to N and k varies from 1 to Q.

The detection rule that results is equivalent to the classi-
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ficati n rule given by Kullback (Kullback, 1959:83). Using

this detection rule results in finding the template density

t(aa(x,y) that differs the )-qst from the true information

cell density q(x,y). The numerical value of a will then

indicate if the ith information cell in the pth frame contains

only clutter or one of the N objects of interest.

Now to implement the detection rule numerically a modi-

fication of a result provided by Gray and Shore (Gray, 1980)

for a speech coding technique will be used. The second result

from the posterior adaptation property stated that

H(e2,p) = H(e 2 ,e,) + H(e 1 ,p) + Imm )
i-I

Rearranging and changing to the target density notation gives

H(e,tk)) = H(e,p) - H(t(k),p) - txi( i - mi1)
j-1

.(Ik)

where X are the Lagrange multipliers used in the pre-

defined template density to"(x,y). The template densities

are also obtained through a minimum cross-entropy procedure

and therefore

V k) t

H(ti' ,p) =- _X0 -k I mi

is the cross-entropy at the minimum. Then substitution of

this expression into the H(e,tmI) expression gives
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H(e,t(r)) H(e,p) X Era

i=1

The term 1-(e,p) is a constant for all template densities

and will not enter into the decision rule. The detection

rule can thus be implemented numerically as

Find ap such that

P~t

i-' i=1

as r varies from 0 to N and s varies from 1 to Q.

Defining (N + 1)Q Lagrange multiplier vectors [Ar, by

Iri)
0

(Arr)'

MI

and an augmented measurement vector as

141 [N) = m
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allows the detection algorithm to be compactly expressed as

a dot product operation.

Find ao such that

= [Ars 4[M]

when compared to all (N + 1)Q lambda vectors.

The detection algorithm presented here is numerically

attractive since all (N + 1)Q lambda vectors for the tem-

- plate densities can be precomputed. The only on-line compu-

tations required then are the information function expected

value measurements and (N + 1)Q vector multiplications or

dot products.
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Chapter IV. Information Functions

Introduction

The goal of the minimum cross-entropy detection algorithm

is the identification of objects contained in information

cells independent of their position and orientation within

the cell. To meet this goal and complete the detection rule

definition, a set of orthonormal image moments will be devel-

oped and referenced to a standard coordinate system to com-

pletely define the information functions fi(xy). The num-

ber and form of the information functions will then partly

determine the accuracy and resulting cross-entropy H(e,t )

distances between the approximate scene density e(x,y) and

the (N + 1)Q template densities t(lkl(x,y).

Image Moments

The concept of moments is used extensively in classical

mechanics and statistics. In this dissertation, the two-

dimensional (r + s)th order raw moments of the normalized

information cell irradiance distribution q(x,y) are defined

in terms of Riemann integrals

Ur, = ffxry q(x,y)dxdy

cell

4 The irradiance distribution is a bounded function that can
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have ri zero values only in a finite part of the xy plane.

Because of these irradiance distribution function character-

* " .- istics, moments of all orders exist and the double moment

sequence Urs} is uniquely determined by the density q(x,y)

and conversely q(x,y) is uniquely determined by fUrs}

(Hu, 1962).

The low-order moments can be used to define a standard

coordinate system about which the moment sequence will be

invariant. With the "target" as the predominant feature in

the information cell where the term "target" also models a

clutter configuration with the target of interest, this stan-

dard coordinate system will be invariant to changes in inten-

sity, orientation and location of the "target." The zero-

order moment is given by

U8.-Uo= (xy)dxdy

Cell

and represents the total image power. The image power is

normalized to one as required of a probability density and

this also provides a standard density that is invariant to

uniform intensity variations. The first-order moments

u1@= ffxq(xy) dxdy

call

and
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Uo ffyq (x, Y) dxdy

cell

can be used to define centrL moments Vrs which are in-

variant to translation of the "target" within the information

cell. These first-order moments locate the centroid of the

image irradiance distribution, i.e. = , =u/Uo

and the central moments are then defined about the centroid

as

VS ff(X - ,)r (y - .)S q(x,y)dxdy

I-. cell

From the definition cf central moments it is easy to express

the central moments in terms of the raw moments. For example,

the first three moment orders are related by

Zero Order: Vo = U00

First Order: V10 = u10- RUoo =0

V = U01 - =0

Second Order: V20 = U20 - 32Uoo

vil - u1 - xyUoo

V % = U2- _ guO

49
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A gene-al formula for calculating the central moments in

terms of the raw moments can be found using the binomial* I/\..b

expansion (a + b)" n' .)"b' The resulting general ex-

pression for converting raw moments into central moments is

2: I M-X) -) -
=r Uijk

where the notation () denotes the usual binomial coefficient

and equals a!/b!(a - b)!. Kanazawa also provides a FORTRAN

program (Center) to calculate two-dimensional central moments

from a set of two-dimensional raw moments using an alternate

iterative relationship (Kanazawa, 1980s106).

Using second order moments, a second image invariant,

the angle of minimum moment of inertia 9 can be used in

addition to the center of mass given by the centroids. The

quantities x,y and 9 together define an invariant reference

frame for any information cell. In terms of raw moments the

angle of minimum moment of inertia is defined by

o = itan"  2(uoou11 -u 10 Uo0 )(u u -(U 2 o'(Uoo U2 0 - U.4.0
00 20 -10 u00u 02 - u01

and defines a region's orientation within a two-fold degen-0
eracy. The use of central moments converts the image invari-

ants into the more intuitive concept of an invariant image

ellipse. The second-order central moments

50
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= ffx - i)2 q(x,y)dxdy

Coll

Vl= - )(y - :7)q(x,y)dxdy

cell

V02  f Y-) 2 q(x,y)dxdy

cell

characterize the size and orientation of the image. Using

only central moments up through second order, the original

image can not be discriminated from a constant irradiance

ellipse having definite size, orientation and eccentricity

while centered at the image centroid (Teague, 1980). The

semi-major axis x' and the semi-minor axis y' of the el-

lipse are shown in Figure 4.1 and define the principal axes

of the pattern. Moments defined using the principal axes of

the pattern are invariant to rotation and translation. Using

central moments, the angle of minimum moment of inertia 9

reduces to the angle X that defines a rotation from the

original x axis to the semi-major axis x' of the image

ellipse. The tilt angle Y is defined by

F.F $ tan1  2VI 3
where -V2 tan71(x) t 7r/2. There is an ambiguity in the

tilt angle $ which can be resolved by selecting $ as the

angle between the x axis and the semi-major axis of the

ellipse or as defined in Figure 4.1, having the image para-
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meter a always greater than or equal to the parameter b.

The rotation to the invariant principal axes of the

pattern corresponds to the orthogonal transformation

x = xcos$ + ysin

y= -xsino + ycosg

Using this orthogonal transformation a general expression for

invariant moments can be defined in terms of a set of central

moments {Vr,} as

ws= ffxcos, + ysing) (-xsin + ycosg) q(x,y)dxdy

cell

Again using the binomial expansion results in the expression

WrS ff 4r\ r (ysin)' gO)(-xsin)S'ky

cell

q(x,y)dxdy

which is equivalent to

T s  skCOS )i S nr.j+, k, +k

(-1 )= k r)( (sin%)Js'Ir
k-0

The general transformation expression shows that the set of

central moments (Vr.} of order N = r + s transform into the
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set of Invariant moments (r of the same order N = r + s.

In summary then the raw moments urs of order two and

below have been used to construct an invariant reference

frame called the principal axes of the pattern which is in-

variant to uniform intensity variations, translation and

rotation of the "target" within the information cell. Gen-

eral expressions were obtained for computing the invariant

moments of any order from a set of raw moments of the same

order. The raw image moments are first converted to central

moments and the central moments are then mapped into invari-

ant moments referenced to the principal axes of the pattern.

The translation and rotation of the set of raw moments will

be much faster numerically than translating and rotating the

complete image before computing the set of invariant moments.

Figure 4.2 illustrates the two equivalent methods of obtain-

ing the desired set of invariant moments.

Orthonormal Moments

From functional analysis it is well-known that the gen-

eral definition of the moment operator

wik = Jfq(x,y) xI yk dxdy

cell

has the form of a projection of the normalized irradiance

function q(x,y) onto the subspace of monomials (X y k.

The Weierstrass approximation theorem shows that the monomials

form a complete basis set for a series expansion of q(x,y)
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mik Orthonormal
Moments
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Fig. 4.2. Alternate Methods to Compute Invariant Moments
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but thr monomials do not form an orthogonal basis set. Using

the Gram-Schmidt process on the linearly independent set

{l1x,x2...} produces a well-known orthonormal set (O,(x)}

over the interval -1 ! x ! 1 that is useful in constructing

a two-dimensional orthonormal set based on the monomials

(Kreyszig, 1978:176). The orthonormal elements have the gen-

eral form

I
O.(x) = 2n + 1 P' (x)

2

where P,(x) is the Legendre polynomial of order n. Using

the orthonormal elements 0 (9) to produce information func-

tions as linear combinations of the monomials allows q(x,y)

to simultaneously have both of the following orthogonal

series expansions:

q(x,y) , Di.mOm(x)O. (Y)
m-O n-O

and

q(x,y) = exp[Z kAmnOm(X)On(Y)

This model of the image density function is an extension of

the model developed by Neyman (Neyman, 1937) and used in

several articles by Crain (Crain, 1977, 1974, 1976) dealing

with approximating univariate probability densities. The
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Neyman :odel for the unknown information cell density func-

tion q(x,y) corresponds to the minimum cross-entropy (maxi-

mum entropy) density

q(x,y) = exp[-Eki f, (xIy)
i=O

with an infinite number of information functions fi(x,y)

formed as a product of normalized Legendre polynomials. The

Neyman infinite series expansion expressed as a product of

normalized Legendre polynomials is basically a summation by

infinite rows of a matrix of series terms and must be approxi-

mated to be of any practical value. The approximation is

obtained by summing along finite diagonals and truncating at

a finite order Nmax to obtain the expressions:

q(x,y) o. xo y
1=0 n-O

and

* q(x,y) exp[l Ai., 0 . (x) On (y

This result is used by Teague (Teague, 1980) and is the basic

* equation required to approximate the unknown information cell

density q(x,y). The approximation for the information cell

density also corresponds to a minimum cross-entropy (maximum

* entropy) density with (N..X + 1)(Nmx + 2)/2 information
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functicns fj(x,y) formed as products of the normalized

Legendre polynomials. Due to the rotational properties of

moments, all moments of a given order must be included in the

series expansion and treated as having equal importance when

constructing an approximate density function. The number of

information functions required in an approximate density func-

tion of order N,, is shown in Figure 4.3 with each diago-

nal line in the figure corresponding to a different moment

order beginning with one function and zero order. The accu-

racy of the truncated approximation for q(x,y) improves as

Nmax is increased, however, the numerical difficulties of

solving a large system of nonlinear equations for [A] also

increases as the size of the corresponding lambda vector

grows with Nmax The selection of the moment order N

is thus a compromise between accuracy as measured by cross-

entropy H(q, t(rs) and the numerical processing time required

to compute the set of lambda vectors [A.,] and the augmented

measurement vectors [M].

The problem is then to select Nmax for the set of tem-

* plate densities trs)(x,y). The template density representa-

tion must be accurate enough to provide a small probability

of error for the detection algorithm and also not require an

* excessive amount of processing time. Cross-entropy H(q,t(rs))

serves as an information theoretic distance between the true

density q(x,y) and the model density t(r)(xy). Because

H(q,tO)) is nonnegative and H(q,t(r)) = 0 if and only if
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q(x,y) t(rs)(xy) almost everywhere, cross-entropy between

the model and the true density can be used to select Nmax

the required model order. The cross-entropy distance is

given by

H(q,t('s)) = ff (x,y)ln q(xy) dxdy

cell

Substituting the Neyman and minimum cross-entropy density

forms gives the expression

" ; ; H~q' ~rs)) = ff(x, y) in eXp - I @ll(x' Y)] d ycel|"

.q s Lexp f

Cell A yxpXY

Rearranging and taking expected values results in

t
H(qt(rs)) = E(a -)mg -ffq(xY)[Y2.t  (x ]

1-0 cell

which is known to approach zero as t approaches infinity.
With the infinite sum in the last expression converging to

some function Z(x,y) the cross-entropy distance measure

will take the form

H(qt(r)) : (i-3 1)m, + C(t)
1-0

where C(t) is a constant for each value of t in the tem-

*e plate density expression. Since this expression for cross-

entropy can not be evaluated analytically, in Figure 6.1
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H (q,tr"') is numerically evaluated for a block tank template

and plotted as a function of t, the number of information

functions used in the template. In general, for the minimum

cross-entropy detection algorithm to be effective the sum of

the expected values of the high order terms or the constant

C(t) must convey a small amount of information. The infor-

mation content of the high order terms in turn depends on

the number and magnitude of the variations in the density

that is being approximated by the template. Because of this

target dependence, H(q,tr)) is evaluated numerically in

Chapter VI using a template with many abrupt and relatively

large changes in the density function to provide an approxi-

mate worst case relationship between the number of informa-

tion functions and the resulting cross-entropy H(q,tr)).

* Legendre Polynomials

To complete the information function definition, we need

explicit expressions for the Legendre polynomials that are

used to form f,(x,y). These orthogonal polynomials are de-

fined over the interval [-1,1] and have the general explic-

it expression

P.(x) = 1%(l)m() 2n - 2m 4) -)2nl n
mMO

where [n/2] denotes the greatest integer not exceeding n/2.

Legendre polynomials also satisfy the following recurrenceI

relation (Courant, 1953:86):
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P (x)n )xn(x) n (a X)

Table I explicitly defines the first thirteen Legendre poly-

nomials and the required normalization factor v(2n +i)/2.

The Legendre polynomials shown can be used to define the

91 information functions required by Figure 4.3 for a twelth

order approximation of the true density function. Figure 4.-

also shows how all 91 information functions are constructed

from the normalized Legendre polynomials. For example, the

44th information function shown as number 43 on the figure

is given by

f43 (x,y) = 01 (x).0 7 (y)

and using the expressions given in Table I becomes

fI3(x,y) = (1.22x)(2.74)(26.81y7 - 43.31x + 19.69y3 - 2.19y)

or

f3(x,y) = 89.31xy7 - 144.66xy5 + 65.76xy3 - 7.31xy

The expected value of this information function can be

written in terms of invariant moments as

mr= 89.31w17 - 144.66w, + 65.76 1 - 7.31w*
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Table .Legendre Polynomials

Symbol ?n1 Explicit Expression
2'

PW 0.707 1

P1 (x) 1.22 x

P2 (X) 1.58 1.5x -0.5

P3 (x) 1.87 2.5x3 -1.5x

P4 (X) 2.12 4.38x4 3.75x'+0.38

P5 (x) 2.35 7-88X5 -8.75X3 +1. 88x

P* (x) 2.55 14.44x6 -19.69x4 +6.56x 2 _-31

P7 (X) 2.74 26.81x7-43.31x5+19.69x3-2.19x

Ps(xW 2.92 50.27x -93.85x-I-54.15x4'-9.85X2+0 .27

P, (x) 3.08 94.962'-201.0927 +140.7525 -36.09qX3

180.42i 0 -427.31x-.+351-90x6 -117.31x
PJW 3.24 +13-53x2 _ -0.24

34 4. 4 2x '-902.05x9+85 4 .57x 7-351.88x5

PI,(x) 3.393

4 6 60..25x -1894.68..+2030.05x

P12 (X) 3.54 -997.24x%+219.98x' -17.57x 2 +0.22
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The me surement vector [1] required in the detection al-

gorithm is then completely defined by the set of invariant

- moments {Wm. 1

In summary, a set of raw moments {um.4 is produced and

converted into central moments {Vm4 about the pattern cen-

troid. The central moments are then rotated and become the

set of invariant moments {Wm4 about the principal axes of

the pattern. The set of orthonormal moments {m4 that form

the measurement vector [M] are then computed as linear com-

binations of these invariant moments. Given these defini-

tions, the detection algorithm is ready to process informa-

tion cells.

6

.

I
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Chater V. Numerical Techniques and Performance Analysis

The key to implementing the minimum cross-entropy de-

tection algorithm is the ability to find the correct Lagrange

multiplier vector for a given set of measurements. The prob-

lem mathematically is to find A = (oA, ... t)T such that

F0(A ffe(xy)dxdy - 1 0

(A) ff (xy)e(xy)dxdy - m, 0

[F (A)]= . --

Ft (A) ffft(x.y)e(x.y)dxdy- mtj 0

where e(xy) = p(xy)exp{-A0 -A f, (xy) - (xy)

is the minimum cross-entropy density with a uniform prior

density. The (t + 1) constraints are nonlinear and except

for a few restricted cases cannot be solved directly for the

lambda vector. Several authors discuss iterative numerical

schemes for simultaneous solution of a system of nonlinear

equations. Johnson (Johnson, 1979b:24) provides a computer

program written in APL for solving discrete cross-entropy

minimization problems with arbitrary positive priors that is

based on the Newton-Raphson method. Gokhale and Kullback
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(Gokha.e, 1978) describe a somewhat different algorithm also

based on the Newton-Raphson method that has been implemented

in PL/1. Agmon, Alhassid and Levine (Agmon, 1979:250) des-

cribe yet another discrete cross-entropy minimization algori-

thm using a uniform prior and a FORTRAN implementation.

Miller also provides an alternate FORTRAN implementation in

one-dimension that is based on the Newton-Raphson method

(Miller, 1980:45).

The Newton method is an iterative scheme based on the

relationship:

[In)=[A] - [n+l] -[J]
1I [F(A (n)]

where [A(")] is the Lagrange multiplier vector lambda for

the nth iteration and [J] is the Jacobian matrix for

[F(A("))]. The initial estimate [A()] is selected and the

equation solved for [As)] . The procedure repeats for [A(2)]

[A(3)] ... [A( I , [ until the difference [,A] is less

than a predefined value which insures convergence has occured.

The equation that must be solved numerically to implement the

Newton method requires an evaluation of the Jacobian matrix

[J] during every iteration for a new lambda vector. The

Jacobian matrix has terms of the form bF (A)/ax5  and [J]

is then a (t + 1) x (t + 1) symmetric matrix. Convergence

and rate of convergence of the Newton algorithm are dependent

on the initial estimate [A(O) . Many authors address the
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theoretical convergence criteria of the "ew:ton method (see

(Ortega, 1970) and (Saaty, 1964)) which in general define a

neighborhood about the solu.'-)n vector where convergence is

assured if the initial estimate falls in this neighborhood.

The Newton method has thus been used almost exclusively

in solution schemes appearing in the technical literature.

Past applications, however, worked with a small number of

constraints and have encountered problems with ill-condition-

ing in the computer generated Jacobian matrix and selection

of an appropriate initial estimate of the lambda vector

(Miller, 1980:50). Using 91 constraints accentuates these

numerical problems to the point that the second-order Newton

method (Dodes, 1978) must be abandoned for lower order meth-

ods that do not use derivative information.

Lambda Vector Solution

The processing required to find the lambda vector is the

main burden of the minimum cross-entropy detection algorithm.

The lambda vector for each template density is, however, pre-

computed and stored for use in the detection algorithm. A

zero order method was selected to solve for the lambda vector

since the procedure must only be accomplished once for each

template density and most numerical problems are avoided.

The Cyclic Coordinate Method (Bazaraa, 1979:271) is a multi-

dimensional search procedure that does not use derivatives.

The only required information is that A f L where L has

the form L = A: al c l- - bi • The search procedure requires
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only a lefined search interval and has been implemented on

the Data General Eclipse S/250 Integral Array Processor.

When performed on the array processor, the cyclic coordinate

search method produces results faster than a comparably di-

mensioned Newton algorithm written in FORTRAN. The search

problem is then given the vector of constraint relationships

FI (A) = f (x,y)p(x,y)exp Zxufu(x,y) dxdy - m, =

cell

(l= 1...t)

find the lambda vector required to define e(x,y). The dis-

crete approximation of this equation nan then be written in

the form

E i(Xl ym) - mi p(xt ,m)eXp Zxuf.(xYm =0

(= i...t)

Using a uniform prior density and then canceling terms re-

sults in the equivalent expression:

E E{i (XlYm) - mi exp Eu4 X ,y(m) - m] 0
1- 1 -f - 1

(I= 1...t)
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The t 91 equations defining the Lagrange parameter vector

A are implicit and nonlinear. The direct numerical solu-

" tion of this vector constraint equation would be computa-

tionaly cumbersome. However, using a result derived by

Agmon et al (Agmon, 1979), this problem can be recast as a

simpler variational problem. The technique requires that a

"potential" function which is concave for any trial set of

Lagrange parameters be defined. The values of the Lagrange

multiplier parameters can then be determined as the set which

minimizes the potential. Agmon et al provide the following

lemma which has direct application to the nonlinear constraint

equation given above:

Let QcRt be a simply connected domain. Let F:,Rt

be a continuously differentiable vector function. Denote its

Jacobian by J, that is J = bFi/aj and suppose it is a

symmetric positive definite matrix. The problem of solving

the set of nonlinear equations F(&) = 0 is equivalent to

finding a minimum of a concave scalar potential function 6Z

0

The solution of the system of nonlinear equations

F(A) = 0 is then found to be equivalent to minimizing the

* following scalar potential function

A) = ln I>£exp [- j k x (x, ..Ym)-
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The sc .ution program Lambda assumes L = {A: -25<X1 254

and has always converged to a minimum for -C). Since the

potential function is conca-, should a component of the solu-

tion vector lie outside this interval the algorithm will se-

lect a value of ±25 and signal that the search interval

should be expanded. The functional minimization program uses

a 32 x 32 grid to compute OAA) and a sequence of decreas-

q ing search intervals to reach the solution vector.

The final component of the solution vector X. is found

from the requirement that the resulting minimum cross-entropy

density e(x,y) integrate to one. The result then

K0 = ln [ffexp Akfk (x ' Y) dxd

To implement the functional minimization scheme and produce

image moments requires an effective quadrature scheme. The

quadrature algorithm used in all programs will be developed

in the next section.

Numerical Quadrature

The first Newton-Cotes formula known as the Trapezoidal

Rule gives a relationship which forms the basis of an effec-

tive quadrature scheme. In one dimension with the interval

of integration divided in n parts the Trapezoidal Rule

states that (Young, 1972:371):

b n-1

ff(x)dx = h [ fnf) + F, fk] - n1? 'e)4~ab
f k=i 12

70



where fk = f(a + kh) and h = (b - a)/n. The first process-

ing requirement for this quadrature scheme is the production

of a set of raw moments 1uqj from the unknown image den-

sity function q(x,y) or template density t(x,y). Raw mo-

ments are then transformed into orthonormal Legendre moments

[M] for use in the detection algorithm or the iterative cy-

clic coordinate method.

• The two-dimensional raw moment upq is defined in Car-

tesian coordinates as

Sup = fx qq(x,y)d dx

which can be rewritten as

C

upq xPdq(x)dx

-C

where

C

dq(X) =fYqq(x,y)dy

-C

The one dimensional Newton-Cotes formula will be used to

approximate dq(x). Using only the first term of the Trape-

zoidal Rule gives

dq(x,) = h ( (xiY 0 ) + y~q(x ,y) + E~~ Y
II
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The ap. :roximation can now be applied again to produce the

raw moments upq . The raw moments are then:

(x +[ o ( x +XPd)xUpq h X dq 0 dq() n k Xk

k-i

Completely expanding this approximation gives a clearer pic-

ture of the factors involved in up. The expanded approxi-

mation for the raw mements Upq is:

u 0 0--hO xY:y@q(xoYo) + x yqq(x,Y.) + xpyqq(x.,y) + x.y.qq(x.,yn

+ 2 nx -1 n-, n-,
yq(xoy ) + x.Yn q(xlyk)+ y xq(x, ,Yo)

k-I 1=1

n-I 1 n-I n-1
+x + h q

m=l k=l !-Il

The first grouping of terms in the expression represents the

contribution from the four corner points of the sampled un-

known (or template) density array q(x i ,yj)(or t(x ,y ) ).

The second grouping of terms represents the contribution from

*t the remaining "edge" sample points. The last term then re-

presents all the interior sample points and when using a

256 x 256 sampled density array represents 98.44% of the pos-

* sible contribution to the moments. When a white border is

used with the density matrix the "edge" terms will make no

contribution at all to the moment approximation and can be

* ignored. With these insights the raw moment approximation
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used -.This dissertation will be

Upq yq(x k, Y)

k=O j=O

For computer computation using this approximation all

moments through order L can be computed with two matrix

multiplications. The matrix equation for the raw moment

matrix is:

u0 0 uO1 u02 ... uOL

'10 ull u12 ... ulL

[u ] = u 2 0 u 2 1 u 2 2 ... u 2L

uLO UL1 LL2 ULL (L+1)x(L+I)

0 0 0 0x 0  x 1  x 2  ... x q(x0 ,yo) q(x o.,).., q(xo.yn)

1 1 1 1-xr

0 21 2 2 'l2'l2y

h x0  x1  x2  "".x2n q~x'yO) q(x29Y1) ""qx'n

SX xl2x q(x2 ) q(xy) •. q(x2,y0 1 2 n qn'0 nY 1n'Yn)
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With the Cartesian coordinate system origin centered in the

bordered image density function and the image normalized to

-1 - x,y ! +1 the subroutine moment in Figure 5.1 computes

the normalized raw moment array.

Detection Algorithm Infrastructure

The basic software modules required in the minimum cross-

entropy detection algorithm are shown in Figure 5.1. The dia-

gram shows both on-line (solid line) and pre-processing (bro-

ken line) software modules with the interdependence between

the two types of processing. When using the detection algo-

rithm to process information cells, the (N + 1)Q lambda

vectors (AIlk) A(Ik) . .. A(lk) ) will be stored as constants
0 1 t

for use in the detection program.

The pre-processing starts with a set of (N + 1)(Q) tem-

plate densities used to "train" the detection algorithm.

These template densities represent pure clutter and N tar-

gets of current interest all superimposed on the Q clutter

backgrounds. The analog to digital program (A - D) produces
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(N + 1'Q arrays of sample values each of dimension 256 x 256.

The sample values within the arrays have also been quantized

to 16 levels. Each array then contains 65,536 integer values

in the range 0-15. The program moment produces a set of 91

raw moments lurd for each template array. The programs

center, rotate and Legendre map the moments for each template

into Legendre moments about the principal axis. The final

preprocessing program lambda iteratively solves for 91 A's

required to define the minimum cross-entropy density for each

template and also used in the detection algorithm.

The on-line processing for each unknown information cell

simply produces a set of 91 Legendre moments [M ] using the

programs outlined in the preprocessing section. With the

Legendre moment vector and the (N + 1)Q lambda vectors the

detection program produces (N + 1)Q dot products. The

matrix of dot product values is searched for the smallest

element and the row number of that element determines the

classification decision for that information cell. The on-

line processing is then repeated for each new information cell.

The lambda values, however, remain fixed for all information

cells presented to the detection algorithm and thus prepro-

Vb cessing is performed only once for a given set of template

4 densities.

Performance Analysis

Given the theory and now the software for a minimum

°
cross-entropy detection algorithm, an expected performance
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analysIs will complete the presentation of this detection

rule. The next chapter will then explore actual performance

on a set of test scenes and verify the impact of the salient

factors influencing probability of error. The analysis in

this section will attempt to use concepts from statistical

communication theory to identify the major factors determin-

ing P(e) in the minimum cross-entropy algorithm. Statis-

tical communication theory has as its goal the detection or

estimation of signals in the presence of noise, but because

of the difficulty of establishing useful statistical assump-

tions (Duda, 1973:324) it has found few applications in scene

analysis.

With statistical communication theory techniques in mind,

the information cell density can be simply modeled as the sum

of two terms:

q(x,y) s(x,y) + n(x,y)

The term s(x,y) represents the expected signal or the tem-

A plate density used to train the detection algorithm, i.e. the

densities that correspond to the stored lambda vectors. The

other component n(x,y) represents the clutter that was not

4 expected nor modeled by the template densities and acts like

a noise term to the detection rule. Looking at the binary

decision case for simplicity, each of the two training den-

4 sities has a set of moments and a corresponding precomputed
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lambda *ector. Then associated with the target template are

[MT] and [AT] while the clutter template has associated

vectors [MC] and [&c].

Using the minimum cross-entropy decision rule will first

require computing a set of moments over the information cell

or

fJJ(xY)f, (x,y)dxdy =m

cell

(1 = O...t)

Substituting in the additive noise model gives the expression

Jfs(xY)f,(x,y)dxdy + ffn(xY)fi(x,y)dxdy = mi

cell Cell

(i = O...t)

Written as a vector this expression becomes

*. [MS] + [MN] = [M]

The first moment vector [MS] represents one of the two ex-

pected signals, i.e. target or clutter. The second term

[MN] is a noise perturbation vector caused by the unexpected

clutter in the scene. The minimum cross-entropy detection

-4 algorithm templates are produced using a uniform prior den-
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sity a-d thus have maximum entropy consistent ,.iith the moment

constraints. Entropy has been related to scene structure

(Watanabe, 1981) where structure refers to the confinement

of scene energy to a small number of pixels and large tran-

sitions in pixel energy. The smaller the scene entropy the

larger the scene structuredness. The minimum cross-entropy

templates thus have as little structure as possible and still

conform to the moment constraints. The normalized scene en-

ergy is smoothly spread over as many pixels as allowed by the

moment constraints to produce the template densities. The

minimum cross-entropy decision rule is thus inherently robust

(Rey, 1978) to small moment perturbations which correspond to

changes in the assumed underlying density. The changes in

the underlying distribution have minimal impact on the detec-

tion algorithm since small perturbations are smoothed away in

the process of constructing the maximum entropy templates.

The minimum cross-entropy decision rule then takes the

perturbed information cell moment vector and performs a dot

product operation with each of the stored template lambda

4 vectors to produce

H6

where H corresponds to selecting the target hypothesis and

HC corresponds to selecting the clutter hypothesis. Expand-

ing the moment vector into its components gives
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E-,f- r + [Ac [N Z] T [ y TL ] + [4AT'r
HC

Given that the signal term corresponds to a target, the first

term above will be a relatively large constant (K) while

the third term will be a small constant (k). The results

occur since both terms represent a cross-entropy that has

been shown to be positive in all cases and very small for

corresponding moment and lambda vectors. Therefore, the de-

cision rule becomes

(K - k) [AT] [MN] - [Ac ]T[liN]
H C

The terms on the right can be viewed as a particular realiza-

tion of clutter from a large ensemble of possible clutter

configurations and are each thus realizations of random

variables. Then the decision rule can be written as

D = (K - k) Z rT - rc = r
HC

Since the random variable r is formed as the difference of

similar random variables, r should have approximately zero

mean and some variance a2. Type II errors are then made

-! when r exceeds D and hypothesis Hc is declared to be

true. Using Tchebycheff's Inequality gives an immediate prob-

ability of error expression for equally likely hypothesis as

P(C) = P( IrI>D) f
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Becaus- the random variables rT and rc are formed as a

sum of approximately independent random variables as

M T (N) IT) (N) + (T) (N)
rT I m 1 + X 2n +m 2+ I (T11 2 ... . t

and

C) IN) (C) (N) (C) (N)rC = + A m2  + ... + m1

the central-limit theorem (Papoulis, 1965:266) applies and

0r will approach a Gaussian density as t becomesi large.

The probability of error can then be expressed as

P(e) = - erf(D_)

where

x

erf(x) - e-.
/2r 0

Now given the ratio D/ a much better estimate of P() can

be achieved with this approximation than the upper bound pro-

vided by Tchebycheff's Inequality. Figure 5.2 shows how

P(E) varies with D/ a

Both approaches to P() have shown a dependence on the

ratio alD in predicting the minimum cross-entropy detection

* algorithm expected performance. The requirements for high
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perfor ance are to keep the clutter standard deviation sigma

as small as possible and generate a large correlation dif-

ference D. The factors which combine to determine detection

performance are now seen to be the number of moments used to

characterize the target, the relative target to scene area

and the amount of clutter modeled with the target in the tem-

plate density. Increasing the number of information func-

tions and thus the number of moments used to characterize the

target will increase D since the k term will approach

zero as more functions are used in the minimum cross-entropy

, template. The variance sigma squared can be decreased by re-

ducing the scene/target ratio. The increased relative target

size will then allow smaller variation in the clutter field

Isince more of the scene will be represented by the s(x,y)

term of the additive model. The variance can also be de-

creased by having more training densities with probable clut-

ter configurations built into the target model. Again the

signal term will account for more of the clutter and reduce

the possible variance associated with the noise term n(x,y)

in the additive model.

The clutter variance, however, can not be measured since

the ensemble of clutter fields is not known and therefore,

this is not a practical method of projecting the detection

algorithm performance. Cross-entropy H(q,t) defined as

H(q,t) = ffq(xy)lnF(x:Y)ldxdy

Coll
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provid.es an alternate method of predicting the detection rule

performance. The cross-entropy H(q,t) = H(q,p) - H(t,p)

serves as a measure of the distance between the scene density

q(x,y) and the template density t(x,y). Minimizing H(q,t)

has the effect of minimizing the number of pixel differences

". between the training template and the scene density and there-

fore limits the magnitude of the clutter variance sigma

squared. Minimizing the template to scene cross-entropy

H(q,t) is thus equivalent to minimizing the clutter variance.

The use of H(q,t) to minimize the number of pixel differ-

ences is analogous to the procedure employeed by Watanabe

(Watanabe, 1965) in showing that the Karhunen-Loeve expansion

of the scene density minimizes the entropy of the squared

transform coefficients over the ensemble of possible orthogo-

nal coordinate systems. The analogous result is that the

. Karhunen-Loeve coordinate system minimizes the number of terms

required to represent the image density.

*1 The next chapter uses H(q,t) to tie together the ef-

fects of increasing the number of information functions, vary-

ing the scene/target ratio and increasing the number of tar-

get templates. In this work the triangle equality H(q,t)

= H(q,p) H(t,p) is used to indirectly evaluate this tem-

* plate to scene metric. To use the triangle equality it has

been assumed that the scene density is well represented with

a finite number of information functions. The final step in

evaluating the detection algorithm then relates the cross-
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Chapter VI. Processing Results

The performance factors identified in the last chapter

that collectively determine the target detecting ability of

the minimum cross-entropy detection algorithm will be ex-

plored in this chapter. The basis of this work is the tem-

plate to scene distance H(q,t) and the triangle equality

H(qt) H(qp) -H(tp)

The performance factors will all be related to the cross-

entropy H(q,t) and then using a set of test pictures the

relationship between cross-entropy and probability of error

is estimated. The results presented here then tie together

the factors determining the error probability and allow a

user to select an operating point and then project a probable

performance or conversely select a required error probability

and know the constraints imposed on the detection algorithm.

Performance Factors

The number of information functions used in the minimum

cross-entropy templates determines H(tp) and by using the

triangle equality also H(q,t). Any scene can be represented

* exactly with a density of the form exp(-k kf k (x,y)) where
k-0

{fk(xY4 defines a complete orthogonal set of functions in

R Thus as information functions are added to the template
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densit, the prior to template cross-entropy H(t,p) will

increase resulting in the template to scene distance H(q,t)

decreasing and eventually approaching zero. This behavior

has been verified using the block tank shown in Figure 6.4

and the basic definition of cross-entropy. The block tank

has a relatively high cross-entropy value of H(q,p) = 1.965

due to its structure or confinement of scene energy and

abrupt changes in density. Also the block tank density has

no camera noise superimposed on the scene that blurs the

picture and reduces template entropy. The minimum cross-

*entropy approximation to the block tank was computed using

second through twelfth order moment information and the re-

sulting template cross-entropy H(t,p) computed. Figure 6.1

shows the template to scene distance as a function of the

number of information functions used in the template. Note

that the resulting data points can be approximated with a

- straight line.

The minimum cross-entropy template densities produced

for second through twelfth order moment information are given

in Figures 6.5 through 6.15 respectively. The template den-

sities are shown to have increasing structure and cross-

entropy H(t,p) values as the number of moment constraints

is increased. The block tank was used to clearly show the

impact on the resulting template of the minimum cross-entropy

requirement and the conflicting requirement to conform to the

moment information.
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r'"T}*e scene cross-entropy H(q,p) measured using a uni-

form prior density has a finite maximum value over the unit

square. Using the clutter background that produces this

maximum value for scene cross-entropy allows a worst case

evaluation of the relationship between H(q,p) and the scene/

target ratio. The maximum value of scene cross-entropy was

experimentally found to be H(q,p) = 2.418 over the unit

square. With the maximum cross-entropy clutter uniformly

distributed over the unit square a tank was placed in the

center of this cluttered scene. The size of the tank was

then steadily decreased to produce Figure 6.2 which shows the

increase in scene cross-entropy as the relative target size

is decreased. The general shape will always hold true with

the initial cross-entropy value a function of the selected

target and H(q,p) asymptotically approaching the maximum

value for large scene/target ratios. Note that the operating

-, point used for the test set of images is shown on the graph.

Scene cross-entropy H(q,p) is one of two components of

H(q,t) as shown by the triangle quality. This first com-

ponent of the template to scene distance then defines a dis-

tance the minimum cross-entropy template density must strive

for to minimize the resulting template to scene distance

4H(qt). Two factors combine to determine the template cross-

entropy. The first factor is camera noise and it tends to

reduce H(t,p) and thus increase the resulting template toKscene distance. The second factor is the amount of informa-
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tion uced to produce the template or the number of informa-

tion functions. The template cross-entropy H(t,p) moves

- . toward H(q,p) as more information functions are added to

the minimum cross-entropy template. The two concepts of

relative target size and the number of information functions

used in the templates can be combined into one multilevel

plot as given in Figure 6.3. The straight line approximation

for H(t,p) has been used to simplify the presentation. The

first two performance factors, scene/target ratio and the

number of information functions in the template, have been

tied together with the template to scene distance H(q,t).

The next step is to estimate the relationship between H(q,t)

and the probability of error.

Approximate Error Probability

The first step in estimating P(e) for the minimum

cross-entropy detection algorithm is to evaluate performance

without the interfering clutter background. Half the test

scenes will contain a target and the other have only a uni-

form background. The target in the first half of the test

scenes was placed at various locations and orientations with-

in the information cell to insure that each target scene is

unique. The initial detection rule test has thus reduced to

using moments as an object descriptor an area where they have

been applied extensively. Starting with early work in char-

acter recognition (Hu, 1963), (Alt, 1962) invariant moments

have proven useful in locating known objects on a uniform
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background. Automatic interpretation of ship photographs

using spatial moments (Smith, 1971) has obtained performance

comparable to human photointpreters, however, again on a

uniform background.

S. B. Dudani extended the moment invariant concept to

the identification of three-dimensional objects in his mas-

ters thesis (Dudani, 1971) and in his doctoral dissertation

(Dudani, 1973) where he conducted an experimental study of

aircraft identification using moment methods. Dudani orient-

ed his work toward video imagery and only used the informa-

tion contained in the second and third order moments calcu-

lated over the image silhouette and boundary to provide the

information for his target classification rule. Then he used

a test set of approximately 100 images and various classifiers

(Bayes, K-nearest neighbor and sequential) to show that the

classifiers performance was superior to that obtained with

human test subjects.

With this historical background of moments used as an

object descriptor it is not surprising that the minimum cross-

entropy detection algorithm performs well without an inter-

fering clutter background. In fact, the classifier correctly

recognized every scene in a test group of twenty pictures.

*i Half of these pictures contained tanks on a uniform background

and the other half only the uniform background. The minimum

*cross-entropy rule was shown to function correctly as an ob-

4 Ject descriptor and has performed at least as well as earlier

105

4



target detection rules on this limited set of test data.

Looking again at the history of moment methods, the next

logical step would be for someone to find objects in clut-

tered scenes using moments. Wong and Hall (Wong, 1978) (Hall,

1979) have tried this concept by using scene invariant moments

as a similarity measure in matching or registration of radar

and optical images. Most researchers have, however, attempted

to isolate a candidate pattern from its background by prepro-

cessing the picture before attempting target classification.

This approach to clutter occured as stated by Nill (Nill,

1981) since it was assumed that otherwise there would be lit-

tle chance of recognizing a pattern when the moments consist

of contributions from the pattern and background clutter com-

bined. The preprocessing, however, produces its own errors

and destroys information in the original scene. The minimum

cross-entropy detection rule provides an alternative to the

preprocessing requirement by accounting for clutter with the

templates and then being robust to clutter perturbations that

occur in the actual scene.

*The exact relationship between error probability and

template to scene cross-entropy can not be established ana-

lytically and therefore must be estimated experimentally. A

set of test scenes and a set of templates are both required

for this experiment. The set of test scenes is represented

by Figure 6.16 which shows one of the fifty tank in clutter

pictures and Figure 6.17 which shows one of the fifty clutter
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pictur..s. The 100 test scenes -.;ere all unique and contained

a broad spectrum of possible clutter configurations. The

selected template densities are provided in Appendix A with

their cross-entropy values. The templates use circular disks

to represent the clutter and provide nine target-clutter al-

ternatives for the minimum cross-entropy detection rule. The

clutter model is a simplified version of one used in an Envi-

ronmental Research Institute of Michigan (ERIM) Report (Wil-

kins, 1977) to provide a means of scene modeling and of gen-

erating "typical" scenes. The ERIM modeling procedure uses

elliptical areas to represent a background scene and produce

a pseudo-image whose spatial characteristics approximate those

of the original image. This method of generating typical

scenes is attractive and as discussed by Teague (Teague, 1980)

when only moments up through second order are considered, all

S- objects are completely equivalent to a constant irradiance

ellipse having definite size, orientation, and eccentricity

and centered at the object centroid. Besides making intuitive

sense ERIM has experimentally found that the performance of

sensors against the actual background and against the simu-

lated background is essentially the same and thus the salient

spatial features of the background have been preserved with

the pseudo-image.

The circular disk is a degenerate ellipse with no orien-

tation information and thus this clutter model is very simi-

" lar to the pseudo-images used by ERIM. The templates with
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clutte.' disks in Appendix A do suffer from superimposed cam-

era noise which detracts from their effectiveness in the tar-

get detection algorithm. Th noise impact is shown in Appen-

dix B where the minimum cross-entropy densities corresponding

to the templates of Appendix A are shown. The minimum cross-

entropy densities that are used in the detection rule have

low prior to template cross-entropy values because of the

camera noise. The smaller template H(t,p) values result

in larger average template to scene distances and larger prob-

ability of error figures. Despite the known impact of cam-

era noise no method could be found that would remove it with-

out distorting the template.

Using the 100 test scenes, each with cross-entropies

H,(qp) and the 18 training templates each with minimum

cross-entropies Hk(t,p) a test run of the detection rule

* -was conducted. In the test procedure P(tank) = P(clutter)

= and the algorithm selects a template from the training

set as the nearest match to each of the test scenes. Thus

for each of the 100 test pictures we have the relationship

H (qt) H ,(qp) - Hk(tp)

1 i =1... 100

k c 11 ... 181

where k is the template selected by the detection rule.
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The larger the set of template densities the more likely one

of the predefined template clutter configurations will cor-

respond closely with the actul test scene and result in the

correct classification of that scene. Figure 6.18 displays

the performance obtained over the test set of scenes as the

number of template alternatives is increased for two to eight-

een. The performance improvement stops in this test of the

detection algorithm but theoretically performance will con-

tinue to improve as more and more templates are available for

comparison with each test scene. The departure from theory

7 in this test can be attributed to the small size of the test

scene set. Looking at Figure 5.2 relating error probability

to the correlation difference/clutter standari deviation

ratio shows that there is an expected slowing in performance

improvement as templates are added to reduce the clutter

.standard deviation. The test set error probability of 0.19

corresponds to a correlation/clutter ration of D/ = 0.94

in Figure 5.2 and a region of rapidly decreasing slope in the

graph. Thus it is expected to require a large change in the

4 number of templates and the resulting correlation/clutter

ratio to produce further substantial improvement in the error

probability for the detection rule. The improvement of P(e)

4 with increasing numbers of templates can also be related to

the improvement in the average template to scene cross-entropy

of the test set defined as

4

H(qt) = H(q,t)/100
I-I

ii1i

a°
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which .'-ill decrease as better template scene matches result

from the larger set of template alternatives. The template

to scene cross-entropy H(q,t) thus has a well defined rela-

tionship to all three performance factors. The cross-entropy

H(q,t) can also be related to the error probability which

is normally used to characterize a recognition system's per-

formance. Kovalevsky (Kovalevsky, 1980:78) explores the re-

lationship between changes in entropy and probability of

error. He was not able to find an exact functional relation-

ship between probability of error and entropy but has estab-

lished a definite relationship between these two performance

indicators. The results show that for a given entropy change

the error probability can vary only between definite limits

and conversely for a given error probability P the entropy

* lies between limits that are a function of P. Since using

uniform priors in the cross-entropy expressions result in an

equivalence between cross-entropy and entropy, Kovalevsky's

results apply to this work also since

H(qt) = H(q,p) - H(t,p)

is exactly a change in entropy.

The bounds provided by Kovalevsky are interesting but

will not allow the selection of H(q,t) based on a system

error probability requirement. The partitioning of the set

of test scene cross-entropy values into four equal size bins
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with each having a resulting P(C) and average cross-entropy

provides an approximation to the relationship between cross-

entropy and probability of error. Figure 6.19 provides a

broken line plot of the resulting error probability plotted

against the average bin cross-entropy values. The straight

line plot was obtained using the overall test set error prob-

ability as a pivot point and then providing a minimum differ-

ence compromise between the more error prone bin cross-entropy

values.

Figure 6.19 clearly shows that decreasing the template

't to scene cross-entropy values will improve the expected error

probability of the detection algorithm. Adding template al-

ternatives and reducing the camera noise superimposed on the

templates will therefore result in improved performance. In-

creasing the number of information functions and decreasing

cell size will also result in smaller cross-entropy H(q,t)

values and thus improved performance. Figures 6.19, 6.18,

and 6.3 together allow a system error probability requirement

to define the required performance factor values. Conversely

the graphs tie together the performance factors determining

error probability and given an operating point provide a good

estimate of expected system performance.

The minimum cross-entropy detection rule has many attrac-

tive attributes. The rule has been shown to be optimal in a

well defined information theoretic sense. Also the algorithm

is computationally efficient in only computing moments and
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dot pr-ducts on line. Finally as shovn in this chapter the

detection rule is robust in maintaining performance with a

range of underlying clutter density configurations.

41
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Chapter VII. Summary and Future Research

Summary

Based on the desired properties of any inference proce-

dure stated as four consistency axioms, this dissertation has

used the concept of minimum cross-entropy to develop a target

in clutter detection algorithm. The algorithm uses minimum

cross-entropy templates that are constructed using all avail-

able moment information, but maintaining "maximum uncertainty"

with respect to unspecified information. This construction

technique provides a "minimally prejudiced" template and re-

sults in a detection rule that is robust to clutter perturba-

tions in the actual scene. The development requires informa-

tion in the form of two-dimensional moments that are convert-

ed into expected values of an orthonormal set of information

functions constructed with Legendre polynomials. The work is

based on a constrained optimization problem and includes

three procedural steps: specification of the set of template

densities, solution of the constraint equations to completely

define the minimum cross-entropy template and the use of

cross-entropy to match actual scenes with the predefined tem-

plates.

The properties of cross-entropy minimization were re-

viewed showing the existance of a unique solution to the con-
strained optimization problem. Further, the solution density
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was shown to take the following form:

* t(x,y) = P(xy)exp{X0 _X f (x,y) - -X fk(x'yd

where the f1 (x,y) are information functions, the X, are

the associated Lagrange multipliers, and p(x,y) is the as-

sumed prior density. A numerical scheme based on the Cyclic

Coordinate Method was presented to solve the constraint equa-

tions recast as a variational problem for a potential func-

tional. The potential functional is concave for any trial

set of Lagrange parameters and will thus always converge to

a global solution.

The general target classification algorithm is developed

based on the ability of cross-entropy to measure how much a

scene density differs from a predefined template density.

* " Using the triangle equality and the posterior adaptation pro-

perty of minimum cross-entropy densities results in a fast

on-line numerical implementation of the classification rule.

The on-line processing was reduced to a dot product operation

between the scene moment vector and all stored template lamb-

da vectors followed by a search for the minimum dot product

value. Conceptually, the minimum cross-entropy classifier

looks for the template lambda vector most nearly orthogonal

to the scene moment vector in the decision space.

Detection rule performance was examined resulting in the

.'4 identification of relative target size, number of information
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functions used in the template and number of template alter-

natives as the major performance determining factors. All

three performance factors were related to a template to scene

distance H(q,t) to show how these factors are interrelated

in determining performance. Finally, a set of 100 test

scenes was processed using the decision rule to estimate the

relationship between the template to scene cross-entropy

H(q,t) and the probability of error. The entire target

detection procedure has been programmed and tested for com-

puter use.

Future Research

The research conducted in developing the minimum cross-

entropy detection algorithm surfaced several areas for con-

tinued investigation. These research areas are outlined in

the following paragraphs.

The area of template selection offers large dividends

in improved detection algorithm performance. A method of

producing templates without camera noise will result in an

immediate performance improvement. The major research area

is,however, an optimum method of clutter placement within the

template coupled with an analysis of the optimum number of

4 templates for a given number of information functions and

scene/target ratio. The performance impact of using ellipses

rather than circles in the clutter model should also be ad-

dressed.

Using integral transforms (Wolf, 1979), the detection
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problen can be moved to a transform domain which could im-

prove error probability performance by removing some of the

initial target orientation uncertainty. As examples, the

magnitude of the Fourier transform of an object or function

is invariant to a shift in the function and the Mellin trans-

form is invariant to scale change in the input function.

Casasent discusses these transforms and combinations such as

Fourier-Mellin transforms coupled with geometrical transfor-

mations (Casasent, 1979) that provide positional, rotational,

and scale invariance. In a transform domain that reduces

initial target orientation uncertainty, the research would

explore the optimum selection of information functions. The

information function set selected would depend on the target

of interest and could achieve improved probability of error

performance with a simplified template model and reduced pre-

processing workload.

The target detection algorithm coupled with preprocess-

ing algorithms such as edge detectors (Abdou, 1978) is anoth-

er area for further research. The information cell moments

would be calculated over an image silhouette and boundary

after the preprocessing operations. Using the preprocessing

approach would result in a method similar to Dudani's (Dudani,

1973) that uses the preprocessing to remove unimportant in-

formation from the image and increase the template cross-

entropy and thus improve error probability performance.

The research centered on characterizing two-dimensional
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4

density functions to develop the detection rule, yet the

theoretical development supports a three-dimensional charac-

terization. Using a stereo vision system or a scanning laser

rangefinder, a range image is obtained where gray level re-

presents not brightness, but the distance from the camera to

the reflecting surface in the scene (Castleman, 1979:349).

The combination of a brightness image and range image pro-

duces an approximate three-dimensional image density function

(x,y,z). The three-dimensional moments of order p + q + s

of the density (x,y,z) are then defined by

Mp. =fffxPyqz$ (x,y,z)dxdydz

cube

With the z axis perpendicular to the principal axis of the

pattern, we have an immediate invariant coordinate system for

the minimum cross-entropy density approximation. After de-

fining a set of three-dimensional information functions all

concepts carry forward from the two-dimensional case. In

three-dimensions the solution to the constrained optimization

problem takes the form

7t(xOyOZ) =p(x$,z)exp (-e
k" .-I-t-

where p(x,y,z) is the prior density. The template clutter

model extends the two-dimensional clutter ellipses to three-

dimensional clutter ellipsoids and the detection rule re-

mains unchanged. Research into a three-dimensional target
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detection rule could provide a method of detecting objects

in oblique aerial scenes.

Finally, this detection rule provides a means of detect-

ing objects in cluttered scenes and we have suggested exten-

sions that may improve the probability of error performance.

Potential applications in reconnaissance, industrial robots,

and imaging radar are examples that make extension of this

work a viable research area.

4

1
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Appendix A. Template Densities

The eighteen template scenes used in Chapter Six to eval-

uate the approximate probability of error are shown in this

appendix. Moments were taken from these template scenes to

define a set of nonlinear constraint equations for each den-

sity. The constraint equations were solved for the lambda

vector using the cyclic coordinate search method. The result-

ing lambda vector then completely defines a corresponding

minimum cross-entropy template that is provided in Appendix B.

These templates were produced from photographs and are

stored in the computer as 256 x 256 integer arrays. The

gray scale is confined to sixteen levels in the sampling pro-

cess which accounts for the abrupt changes in intensity seen

in the templates. Note the camera noise superimposed on

these templates and their resulting low cross-entropy values.

The odd number templates represent clutter scenes while

the even number templates represent a tank with various clut-

4ter backgrounds. Each template pair (ex. 1 and 2) represents

a tank-clutter alternative for the detection rule. The clut-

ter seen in these templates comes from dark circular disks

4 distributed in the scene that represent various possible

clutter configurations.
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Appendix B. Minimum Cross-Entropy Templates

The eighteen minimum cross-entropy densities that cor-

respond to the template scenes given in Appendix A are shown

in this appendix. Given the lambda vector resulting from

the solution of the constrainted optimization problem de-

fined by the template density moments, each of the minimum

cross-entropy templates is completely defined by

f"(k) 90 (k) 2)

t k (xy) = expI - ,- l j f, (xY]
i-I

k= 1... 18 (B.1)

Note the very low cross-entropy values resulting from the

camera noise.

6

147

-



0

0

4£

148



H4-

02

0

0

. 10,

lC4

149 4



4P

0

p4

0

I.4

150



00

4-.

0

4
f-P

to

.f

V44

151



-4o

0

Cd

E-4

0

152~



I4

I4-3

I III N

I. 0

4

rX4

153



00

'-4

02
0I

I.-

p4

02

0
p)
0

.V-4

154



0\

-. 4

'0

02
0
04

P4

0
4

0

155-



'-0

0

4D,

4

4-

0

oi-l

I r

oil

15-6



\.0

\0

C;

CI,

I 0

,1SA

0
TA4

+1)

Et

p4
4-3

0

r2

.4H

157



4-3

4-3

04
II

4

158)



4P

0
II

4)

0

0

0
4

ILI

1594



74%

0

'-4

4-3

4

r-j

4-3
ca

0

E!

*1-4

160



C'-

E-4

0
4

CIE

161)



00

0

U,
0

4.3

H3

*r4

.4-)

aE

162



pq
0

~C/1
0

C2
H

0

00
'-4

163



'-4

0

p4

0

oill

164



00

E-A

0

40

-4-

1651



Appendix C. Tenlate Photographs

The eighteen original template photographs are provided

in this appendix. The photographs are sampled to produce the

sixteen level gray scale perspective plots provided in Appen-

dix A.
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Fig. C.1. Template Alternative One
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Fig. C.2. Template Alternative Two
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